M. PHARM SYLLABUS

PHARMACEUTICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Credit Hours</th>
<th>Credit Points</th>
<th>Hrs/wk</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPT1061</td>
<td>Modern Pharmaceutical Analytical Techniques</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPT1062</td>
<td>Drug Delivery System</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPT 1063</td>
<td>Modern Pharmaceutics</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPT 1064</td>
<td>Regulatory Affair</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPT 1965</td>
<td>Pharmaceutics Practical I</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>200</td>
</tr>
<tr>
<td>MPT 1966</td>
<td>Seminar/Assignment</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>35</td>
<td>26</td>
<td>35</td>
<td>700</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Credit Hours</th>
<th>Credit Points</th>
<th>Hrs/wk</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPT 2061</td>
<td>Molecular Pharmaceutics (Nano Tech and Targeted DDS)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPT2062</td>
<td>Advanced Biopharmaceutics & Pharmacokinetics</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPT 2063</td>
<td>Computer Aided Drug Delivery System</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPT 2064</td>
<td>Cosmetic and Cosmeceuticals</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPT 2065</td>
<td>Pharmaceutics Practical II</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>200</td>
</tr>
<tr>
<td>MPT 2066</td>
<td>Seminar/Assignment</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>35</td>
<td>26</td>
<td>35</td>
<td>700</td>
</tr>
</tbody>
</table>
PHARMACEUTICS

1st SEMESTER

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES

(MPT 1061)

Scope
This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives
After completion of course student is able to know,

- Chemicals and Excipients
- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 HOURS

b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier -Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy

d. Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications. 11 Hrs

2. NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy. 11 Hrs
4 Chromatography: Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution and applications of the following:
a) Paper chromatography b) Thin Layer chromatography c) Ion exchange chromatography
d) Column chromatography e) Gas chromatography f) High Performance Liquid chromatography
g) Affinity chromatography 11Hrs
5 a. Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following: 11Hrs
a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Isoelectric focusing
b. X ray Crystallography: Production of X rays, Different X ray diffraction methods, Bragg’s law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of Xray diffraction.
6 Immunological assays: RIA (Radio immuno assay), ELISA, Bioluminescence assays. 5 Hrs

REFERENCES
DRUG DELIVERY SYSTEMS
(MPT 1062)

SCOPE
This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

OBJECTIVES
Upon completion of the course, student shall be able to understand

- The various approaches for development of novel drug delivery systems.
- The criteria for selection of drugs and polymers for the development of delivering system
- The formulation and evaluation of Novel drug delivery systems.

THEORY

 10 Hrs

 10 Hrs

 10 Hrs

4 Ocular Drug Delivery Systems: Barriers of drug permeation, Methods to overcome barriers.

 06 Hrs
5 Transdermal Drug Delivery Systems: Structure of skin and barriers, Penetration enhancers, Transdermal Drug Delivery Systems, Formulation and evaluation. 10 Hrs

6 Protein and Peptide Delivery: Barriers for protein delivery. Formulation and Evaluation of delivery systems of proteins and other macromolecules. 08 Hrs

7 Vaccine delivery systems: Vaccines, uptake of antigens, single shot vaccines, mucosal and transdermal delivery of vaccines. 06 Hrs

REFERENCES
3. Encyclopedia of controlled delivery, Editor- Edith Mathiowitz, Published by WileyInterscience Publication, John Wiley and Sons, Inc, New York, Chichester/Weinheim
5. S.P.Vyas and R.K.Khar, Controlled Drug Delivery - concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002

JOURNALS
1. Indian Journal of Pharmaceutical Sciences (IPA)
2. Indian drugs (IDMA)
3. Journal of controlled release (Elsevier Sciences) desirable
4. Drug Development and Industrial Pharmacy (Marcel & Decker) desirable

MODERN PHARMACEUTICS
(MPT 1063)

SCOPE
Course designed to impart advanced knowledge and skills required to learn various aspects and concepts at pharmaceutical industries

OBJECTIVES
Upon completion of the course, student shall be able to understand
The elements of preformulation studies.
The Active Pharmaceutical Ingredients and Generic drug Product development
Industrial Management and GMP Considerations.
Optimization Techniques & Pilot Plant Scale Up Techniques
Stability Testing, sterilization process & packaging of dosage forms.

THEORY 60 HRS

1. a. Preformation Concepts – Drug Excipient interactions - different methods, kinetics of stability, Stability testing. Theories of dispersion and pharmaceutical Dispersion (Emulsion and Suspension, SMEDDS) preparation and stability Large and small volume parental – physiological and formulation consideration, Manufacturing and evaluation. 10 Hr

b. Optimization techniques in Pharmaceutical Formulation:
Concept and parameters of optimization, Optimization techniques in pharmaceutical formulation and processing. Statistical design, Response surface method, Contour designs, Factorial designs and application in formulation 10 Hr

2 Validation: Introduction to Pharmaceutical Validation, Scope & merits of Validation, Validation and calibration of Master plan, ICH & WHO guidelines for calibration and validation of equipments, Validation of specific dosage form, Types of validation. Government regulation, Manufacturing Process Model, URS, DQ, IQ, OQ & P.Q. of facilities. 10 Hr

3 cGMP & Industrial Management: Objectives and policies of current good manufacturing practices, layout of buildings, services, equipments and their maintenance Production management: Production organization, materials management, handling and transportation, inventory management and control, production and planning control, Sales forecasting, budget and cost control, industrial and personal relationship. Concept of Total Quality Management. 10 Hr

4 Compression and compaction: Physics of tablet compression, compression, consolidation, effect of friction, distribution of forces, compaction profiles. Solubility. 10 Hr

5 Study of consolidation parameters; Diffusion parameters, Dissolution parameters and Pharmacokinetic parameters, Heckel plots, Similarity factors – f2 and f1, Higuchi and Peppas plot, Linearity Concept of significance, Standard deviation , Chi square test, students T-test, ANOVA test. 10 Hr

REFERENCES
1. Theory and Practice of Industrial Pharmacy By Lachmann and Libermann
3. Pharmaceutical Dosage forms: Disperse systems, Vol, 1-2; By Leon Lachmann.
4. Pharmaceutical Dosage forms: Parenteral medications Vol. 1-2; By Leon Lachmann.
5. Modern Pharmaceutics; By Gillbert and S. Banker.
8. Physical Pharmacy; By Alfred martin
11. Quality Assurance Guide; By Organization of Pharmaceutical producers of India.
13. How to practice GMPs; By P.P.Sharma. Vandhana Publications, Agra.
15. Pharmaceutical Preformulations; By J.J. Wells.
16. Applied production and operations management; By Evans, Anderson, Sweeney and Williams.
17. Encyclopaedia of Pharmaceutical technology, Vol I – III.

REGULATORY AFFAIRS
(MPT 1064)

Scope
Course designed to impart advanced knowledge and skills required to learn the concept of generic drug and their development, various regulatory filings in different countries, different phases of clinical trials and submitting regulatory documents : filing process of IND, NDA and ANDA
☐ To know the approval process of
☐ To know the chemistry, manufacturing controls and their regulatory importance
OBJECTIVES:
Upon completion of the course, it is expected that the students will be able to understand
- The Concepts of innovator and generic drugs, drug development process
- The Regulatory guidance’s and guidelines for filing and approval process
- Preparation of Dossiers and their submission to regulatory agencies in different countries
- Post approval regulatory requirements for actives and drug products
- Submission of global documents in CTD/ eCTD formats
- Clinical trials requirements for approvals for conducting clinical trials
- Pharmacovigilence and process of monitoring in clinical trials.

THEORY
60 Hrs
1. a. Documentation in Pharmaceutical industry: Master formula record, DMF (Drug Master File), distribution records. Generic drugs product development Introduction, Hatch-Waxman act and amendments, CFR (CODE OF FEDERAL REGULATION) , drug product performance, in-vitro, ANDA regulatory approval process, NDA approval process, BE and drug product assessment, in –vivo, scale up process approval changes, post marketing surveillance, outsourcing BA and BE to CRO. 12 Hrs
b. Regulatory requirement for product approval: API, biologics, novel, therapies obtaining NDA, ANDA for generic drugs ways and means of US registration for foreign drugs 12 Hrs
2 CMC, post approval regulatory affairs. Regulation for combination products and medical devices.CTD and ECTD format, industry and FDA liaison. ICH - Guidelines of ICH-Q, S E, M. Regulatory requirements of EU, MHRA, TGA and ROW countries. 12 Hrs
3 Non clinical drug development: Global submission of IND, NDA, ANDA. Investigation of medicinal products dossier, dossier (IMPD) and investigator brochure (IB). 12 Hrs
4 Clinical trials: Developing clinical trial protocols. Institutional review board/ independent ethics committee Formulation and working procedures informed Consent process and procedures. HIPAA- new, requirement to clinical study process, pharmacovigilance safety monitoring in clinical trials. 12 Hrs

REFERENCES
7. www.ich.org/
8. www.fda.gov/
9. europa.eu/index_en.htm

PHARMACEUTICS PRACTICALS - I
(MPT 1960)
1. Analysis of pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
2. Simultaneous estimation of multi component containing formulations by UV spectrophotometry
3. Experiments based on HPLC
4. Experiments based on Gas Chromatography
5. Estimation of riboflavin/quinine sulphate by fluorimetry
6. Estimation of sodium/potassium by flame photometry
7. To perform In-vitro dissolution profile of CR/ SR marketed formulation
8. Formulation and evaluation of sustained release matrix tablets
9. Formulation and evaluation osmotically controlled DDS
10. Preparation and evaluation of Floating DDS- hydro dynamically balanced DDS
11. Formulation and evaluation of Mucoadhesive tablets.
12. Formulation and evaluation of transdermal patches.
13. To carry out preformulation studies of tablets.
14. To study the effect of compressional force on tablets disintegration time.
15. To study Micromeritic properties of powders and granulation.
16. To study the effect of particle size on dissolution of a tablet.
17. To study the effect of binders on dissolution of a tablet.
18. To plot Heckal plot, Higuchi and Peppas plot and determine similarity factors.
2nd SEMESTER

MOLECULAR PHARMACEUTICS (NANO TECHNOLOGY & TARGETED DDS) (NTDS)
(MPT 2061)

SCOPE
This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

OBJECTIVES
Upon completion of the course student shall be able to understand

- The various approaches for development of novel drug delivery systems.
- The criteria for selection of drugs and polymers for the development of NTDS
- The formulation and evaluation of novel drug delivery systems.

THEORY 60 Hrs
1. Targeted Drug Delivery Systems: Concepts, Events and biological process involved in drug targeting. Tumor targeting and Brain specific delivery. 12 Hrs
3. Micro Capsules / Micro Spheres: Types, preparation and evaluation, Monoclonal Antibodies; preparation and application, preparation and application of Niosomes, Aquasomes, Phytosomes, Electrosomes. 12 Hrs
4. Pulmonary Drug Delivery Systems : Aerosols, propellents, Containers Types, preparation and evaluation, Intra Nasal Route Delivery systems; Types, preparation and evaluation. 12 Hrs

REFERENCES

ADVANCED BIOPHARMACEUTICS & PHARMACOKINETICS
(MPT 2062)

SCOPE
This course is designed to impart knowledge and skills necessary for dose calculations, dose adjustments and to apply biopharmaceutics theories in practical problem solving. Basic theoretical discussions of the principles of biopharmaceutics and pharmacokinetics are provided to help the students’ to clarify the concepts.

OBJECTIVES
Upon completion of this course it is expected that students will be able understand,

- The basic concepts in biopharmaceutics and pharmacokinetics.
- The use raw data and derive the pharmacokinetic models and parameters the best describe the process of drug absorption, distribution, metabolism and elimination.
- The critical evaluation of biopharmaceutic studies involving drug product equivalency.
- The design and evaluation of dosage regimens of the drugs using pharmacokinetic and biopharmaceutic parameters.
- The potential clinical pharmacokinetic problems and application of basics of pharmacokinetic

THEORY

1. Drug Absorption from the Gastrointestinal Tract:
Gastrointestinal tract, Mechanism of drug absorption, Factors affecting drug absorption, pH–partition theory of drug absorption. Formulation and physicochemical factors: Dissolution rate, Dissolution process, Noyes–Whitney equation and drug dissolution, Factors affecting the dissolution rate. Gastrointestinal absorption: role of the dosage form: Solution (elixir, syrup and solution) as a dosage form, Suspension as a dosage form, Capsule as a dosage form, Tablet as a dosage form, Dissolution methods, Formulation and processing factors, Correlation of invivo data with in vitro dissolution data. Transport model: Permeability-Solubility-Charge State and
the pH Partition Hypothesis, Properties of the Gastrointestinal Tract (GIT), pH Microclimate Intracellular pH Environment, Tight-Junction Complex. 12 Hrs

3 Pharmacokinetics: Basic considerations, pharmacokinetic models, compartment modeling: one compartment model- IV bolus, IV infusion, extra-vascular. Multi compartment model: two compartment - model in brief, non-linear pharmacokinetics: cause of non-linearity, Michaelis – Menten equation, estimation of km and vmax. Drug interactions: introduction, the effect of protein binding interactions, the effect of tissue-binding interactions, cytochrome p450-based drug interactions, drug interactions linked to transporters. 12 Hrs

4 Drug Product Performance, In Vivo: Bioavailability and Bioequivalence: drug product performance, purpose of bioavailability studies, relative and absolute availability. methods for assessing bioavailability, bioequivalence studies, design and evaluation of bioequivalence studies, study designs, crossover study designs, evaluation of the data, bioequivalence example, study submission and drug review process. Biopharmaceutics classification system, methods. Permeability: In-vitro, in-situ and In-vivo methods. generic biologics (biosimilar drug products),clinical significance of bioequivalence studies, special concerns in bioavailability and bioequivalence studies, generic substitution. 12 Hrs

5 Application of Pharmacokinetics: Modified-Release Drug Products, Targeted Drug Delivery Systems and Biotechnological Products. Introduction to Pharmacokinetics and pharmacodynamic, drug interactions. Pharmacokinetics and pharmacodynamics of biotechnology drugs. Introduction, Proteins and peptides, Monoclonal antibodies, oligonucleotides, Vaccines (immunotherapy), Gene therapies. 12 Hrs

REFERENCES
2. Biopharmaceutics and Pharmacokinetics, A. Treatise, D.M. Brahmankar and Sunil B. Jaiswal., VallabPrakashan, Pitampura, Delhi
4. Textbook of Biopharmaceutics and Pharmacokinetics, Dr. Shobha Rani R. Hiremath, Prism Book

COMPUTER AIDED DRUG DEVELOPMENT
(MPT 2063)

SCOPE
This course is designed to impart knowledge and skills necessary for computer Applications in pharmaceutical research and development who want to understand the application of computers across the entire drug research and development process. Basic theoretical discussions of the principles of more integrated and coherent use of computerized information (informatics) in the drug development process are provided to help the students to clarify the concepts.

OBJECTIVES

Upon completion of this course it is expected that students will be able to understand,

- History of Computers in Pharmaceutical Research and Development
- Computational Modeling of Drug Disposition
- Computers in Preclinical Development
- Optimization Techniques in Pharmaceutical Formulation
- Computers in Market Analysis
- Computers in Clinical Development
- Artificial Intelligence (AI) and Robotics
- Computational fluid dynamics (CFD)

THEORY

 12 Hrs

b. Quality-by-Design In Pharmaceutical Development:

 Introduction, ICH Q8 guideline, Regulatory and industry views on QbD, Scientifically based QbD - examples of application.

 12 Hrs

 12 Hrs

3 Computer-aided formulation development:: Concept of optimization, Optimization parameters, Factorial design, Optimization technology & Screening design. Computers in Pharmaceutical Formulation: Development of pharmaceutical emulsions, microemulsion drug carriers Legal
Protection of Innovative Uses of Computers in R&D, The Ethics of Computing in Pharmaceutical Research, Computers in Market analysis 12 Hrs

4 a. Computer-aided biopharmaceutical characterization:
Gastrointestinal absorption simulation. Introduction, Theoretical background, Model construction, Parameter sensitivity analysis, Virtual trial, Fed vs. fasted state, In vitro dissolution and in vitro in vivo correlation, Biowaiver considerations

c. Computers in Clinical Development: Clinical Data Collection and Management, Regulation of Computer Systems 12 Hrs

5 Artificial Intelligence (AI), Robotics and Computational fluid dynamics: General overview, Pharmaceutical Automation, Pharmaceutical applications, Advantages and Disadvantages. Current Challenges and Future Directions. 12 Hrs

REFERENCES

COSMETICS AND COSMECEUTICALS
(MPT 2064)

SCOPE
This course is designed to impart knowledge and skills necessary for the fundamental need for cosmetic and cosmeceutical products.

OBJECTIVES
Upon completion of the course, the students shall be able to understand

- Key ingredients used in cosmetics and cosmeceuticals.
- Key building blocks for various formulations.
- Current technologies in the market
- Various key ingredients and basic science to develop cosmetics and cosmeceuticals
Scientific knowledge to develop cosmetics and cosmeceuticals with desired Safety, stability, and efficacy.

THEORY 60 Hrs

1. Cosmetics – Regulatory: Definition of cosmetic products as per Indian regulation. Indian regulatory requirements for labeling of cosmetics Regulatory provisions relating to import of cosmetics., Misbranded and spurious cosmetics. Regulatory provisions relating to manufacture of cosmetics – Conditions for obtaining license, prohibition of manufacture and sale of certain cosmetics, loan license, offences and penalties.

2. Cosmetics - Biological aspects : Structure of skin relating to problems like dry skin, acne, pigmentation, prickly heat, wrinkles and body odor. Structure of hair and hair growth cycle. Common problems associated with oral cavity. Cleansing and care needs for face, eye lids, lips, hands, feet, nail, scalp, neck, body and under-arm. 12 Hrs

Perfumes; Classification of perfumes. Perfume ingredients listed as allergens in EU regulation. Controversial ingredients: Parabens, formaldehyde liberators, dioxane. 12 Hrs

4. Design of cosmeceutical products: Sun protection, sunscreens classification and regulatory aspects. Addressing dry skin, acne, sun-protection, pigmentation, prickly heat, wrinkles, body odor., dandruff, dental cavities, bleeding gums, mouth odor and sensitive teeth through cosmeceutical formulations. 12 Hrs

5. Herbal Cosmetics : Herbal ingredients used in Hair care, skin care and oral care. Review of guidelines for herbal cosmetics by private bodies like cosmos with respect to preservatives, emollients, foaming agents, emulsifiers and rheology modifiers. Challenges in formulating herbal cosmetics. 12 Hrs

REFERENCES

3. Cosmetics - Formulation, Manufacture and quality control, PP.Sharma, 4th edition
4. Handbook of cosmetic science and Technology A.O.Barel, M.Paye and H.I. Maibach. 3rd edition
5. Cosmetic and Toiletries recent suppliers catalogue.
6. CTFA directory.

PHARMACEUTICS PRACTICALS - II

(MPT 2960)

1. To study the effect of temperature change, non solvent addition, incompatible polymer addition in microcapsules preparation
2. Preparation and evaluation of Alginate beads
3. Formulation and evaluation of gelatin /albumin microspheres
4. Formulation and evaluation of liposomes/niosomes
5. Formulation and evaluation of spherules
6. Improvement of dissolution characteristics of slightly soluble drug by Solid dispersion technique.
7. Comparison of dissolution of two different marketed products /brands
8. Protein binding studies of a highly protein bound drug & poorly protein bound drug
9. Bioavailability studies of Paracetamol in animals.
10. Pharmacokinetic and IVIVC data analysis by Winnoline R software
11. In vitro cell studies for permeability and metabolism
12. DoE Using Design Expert® Software
13. Formulation data analysis Using Design Expert® Software
14. Quality-by-Design in Pharmaceutical Development
15. Computer Simulations in Pharmacokinetics and Pharmacodynamics
16. Computational Modeling Of Drug Disposition
17. To develop Clinical Data Collection manual
19. Development and evaluation of Creams
20. Development and evaluation of Shampoo and Toothpaste base
21. To incorporate herbal and chemical actives to develop products
22. To address Dry skin, acne, blemish, Wrinkles, bleeding gums and dandruff
Course of study for M. Pharm. III Semester

Common for all specialisations

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Course Code</th>
<th>Course</th>
<th>Contact Hours</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>Project</td>
</tr>
<tr>
<td>3</td>
<td>MPT-391</td>
<td>Discussion / Presentation (Proposal)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MPT-392</td>
<td>Research Work</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

SESSIONAL

<table>
<thead>
<tr>
<th></th>
<th>Course Code</th>
<th>Course</th>
<th>Contact Hours</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MPT-384</td>
<td>Research Methodology and Biostatistics*</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MPT-381</td>
<td>Journal club</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Total

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>31</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

*Non University Exam
MPT-384- Research Methodology & Biostatistics

UNIT-I
General Research Methodology: Research, objective, requirements, practical difficulties, review of literature, study design, types of studies, strategies to eliminate errors/bias, controls, randomization, crossover design, placebo, blinding techniques.

UNIT-II
Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests (students “t” test, ANOVA, Correlation coefficient, regression), non-parametric tests (wilcoxon rank tests, analysis of variance, correlation, chi square test), null hypothesis, P values, degree of freedom, interpretation of P values.

UNIT-III
Medical Research: History, values in medical ethics, autonomy, beneficence, non-maleficence, double effect, conflicts between autonomy and beneficence/non-maleficence, euthanasia, informed consent, confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees, cultural concerns, truth telling, online business practices, conflicts of interest, referral, vendor relationships, treatment of family members, sexual relationships, fatality.

UNIT-IV
CPCSEA guidelines for laboratory animal facility: Goals, veterinary care, quarantine, surveillance, diagnosis, treatment and control of disease, personal hygiene, location of animal facilities to laboratories, anesthesia, euthanasia, physical facilities, environment, animal husbandry, record keeping, SOPs, personnel and training, transport of lab animals.

UNIT-V
Declaration of Helsinki: History, introduction, basic principles for all medical research, and additional principles for medical research combined with medical care.
Course of study for M. Pharm. IV Semester

(Common for All Specializations)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hours</th>
<th>Full Marks</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MPT-491</td>
<td>Discussion/Final Presentation</td>
<td>3</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MPT-492</td>
<td>Research Work</td>
<td>31</td>
<td>100</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sessional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MPT-481</td>
<td>Journal Club</td>
<td>1</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>MPT-482</td>
<td>Co-curricular Activities</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Participation in National Level seminar/Conference/Workshop/Symposium/Training Programs (related to the specialization of the student).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Participation in International Level seminar/Conference/Workshop/Symposium/Training Programs (related to the specialization of the student).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Academic Award/research Award from State Level/National Agencies.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Academic Award/research Award from International Agencies.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research/Review Publication in National Journals (Indexed in Scopus/Web of Science).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research/Review Publication in International Journals (Indexed in Scopus/Web of Science).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 35 23
Guidelines for Awarding Credit Points for Co-curricular Activities

(One 1 Credit & One 2 Credit Course to be chosen)

<table>
<thead>
<tr>
<th>Name of the Activity</th>
<th>Maximum Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in National Level Seminar / Conference / Workshop / Symposium / Training Programs (related to the specialization of the student)</td>
<td>01</td>
</tr>
<tr>
<td>Participation in international Level Seminar / Conference / Workshop / Symposium / Training Programs (related to the specialization of the student)</td>
<td>02</td>
</tr>
<tr>
<td>Academic Award / Research Award from State Level / National Agencies</td>
<td>01</td>
</tr>
<tr>
<td>Academic Award / Research Award from International Agencies</td>
<td>02</td>
</tr>
<tr>
<td>Research / Review Publication in National Journals (Indexed in Scopus / Web of Science)</td>
<td>01</td>
</tr>
<tr>
<td>Research / Review Publication in International Journals (Indexed in Scopus / Web of Science)</td>
<td>02</td>
</tr>
</tbody>
</table>

Note: International Conference: Held Outside India
International Journal: The Editorial Board outside India